Expression of the bilateral deficit during reflexively evoked contractions.

نویسندگان

  • N Khodiguian
  • A Cornwell
  • E Lares
  • P A DiCaprio
  • S A Hawkins
چکیده

During maximal contractions, the sum of forces exerted by homonymous muscles unilaterally is typically larger than the sum of forces exerted by the same muscles bilaterally. This phenomenon is known as the bilateral deficit (BLD), and it is suggested that this deficit is due to neural inhibition. It remains unclear, however, whether such inhibition is mediated by supraspinal mechanisms or by reflex pathways at the level of spinal cord. To further study the origin of likely neural influences, we tested for the presence of BLD under the condition of reflexive force generation. Force output and integrated electromyogram (iEMG) (quadriceps femoris) were measured in 17 male participants after initiation of the myotatic patellar reflex under unilateral and bilateral conditions. A significant BLD of 9.26 +/- 1.19 (P = 0.004) and 16.76 +/- 4.69% (P = 0.001) was found for force and iEMG, respectively. However, because similar findings were not evident during maximal isometric knee extensions, it is difficult to predict the contribution of a spinal mechanism to the BLD under the condition of maximal voluntary activation.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Corticospinal Facilitation of Erector Spinae and Rectus Abdominis Muscles During Graded Voluntary Contractions is Task Speci.c: A Pilot Study on Healthy Individuals

Introduction: In this study we compared transcranial magnetic stimulation (TMS) elicited motor evoked potentials (MEPs) in a postural (bilateral low back extension: BLBE) and a respiratory (forced expiration during breath holding: FEBH) task.Methods: Using TMS of the left motor cortex, simultaneous patterns of corticospinal facilitation of the contralateral erector spinae (ES) and rectus abdomi...

متن کامل

Bilateral Deficit in Explosive Force Production Is Not Caused by Changes in Agonist Neural Drive

Bilateral deficit (BLD) describes the phenomenon of a reduction in performance during synchronous bilateral (BL) movements when compared to the sum of identical unilateral (UL) movements. Despite a large body of research investigating BLD of maximal voluntary force (MVF) there exist a paucity of research examining the BLD for explosive strength. Therefore, this study investigated the BLD in vol...

متن کامل

Neuromuscular drive and force production are not altered during bilateral contractions.

Several investigators have studied the deficit in maximal voluntary force that is said to occur when bilateral muscle groups contract simultaneously. A true bilateral deficit (BLD) would suggest a significant limitation of neuromuscular control; however, some of the data from studies in the literature are equivocal. Our purpose was to determine whether there is a BLD in the knee extensors of un...

متن کامل

Force-EMG changes during sustained contractions of a human upper airway muscle.

Human upper airway and facial muscles support breathing, swallowing, speech, mastication, and facial expression, but their endurance performance in sustained contractions is poorly understood. The muscular fatigue typically associated with task failure during sustained contractions has both central and intramuscular causes, with the contribution of each believed to be task dependent. Previously...

متن کامل

Mechanisms of reflex bladder activation by pudendal afferents.

Activation of pudendal afferents can evoke bladder contraction or relaxation dependent on the frequency of stimulation, but the mechanisms of reflex bladder excitation evoked by pudendal afferent stimulation are unknown. The objective of this study was to determine the contributions of sympathetic and parasympathetic mechanisms to bladder contractions evoked by stimulation of the dorsal nerve o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of applied physiology

دوره 94 1  شماره 

صفحات  -

تاریخ انتشار 2003